
CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 1

UNIT V FILE PROCESSING

Files – Types of file processing: Sequential access, Random access – Sequential

access file - Example Program: Finding average of numbers stored in sequential

access file - Random access file -Example Program: Transaction processing using

random access files – Command line arguments

5.1 Introduction

A file is a semi-permanent, named collection of data. A File is usually stored

on magnetic media, such as a hard disk or magnetic tape. Semi-permanent means that

data saved in files stays safe until it is deleted or modified.

Named means that a particular collection of data on a disk has a name, like

mydata.dat and access to the collection is done by using its name.

A file represents a sequence of bytes on the disk where a group of related data

is stored. File is created for permanent storage of data. It is a readymade structure.

5.1.1 Types of Files

1. Text files

2. Binary files

1. Text Files

A text file consists of consecutive characters, which are interpreted by the

library functions used to access them and by format specifiers used in functions.

Text files are the normal .txt files that you can easily create using Notepad or

any simple text editors.

They take minimum effort to maintain, are easily readable, and provide least

security and takes bigger storage space.

2. Binary files

A binary file consists of bytes of data arranged in continuous block. A separate

set of library functions is there to process such data files.

Binary files are mostly the .bin files in your computer. Instead of storing data in

plain text, they store it in the binary form (0's and 1's). They can hold higher amount

of data, are not readable easily and provides a better security than text files.

5.1.2 File Operations

In C, you can perform four major operations on the file, either text or binary:

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 2

1. Creating a new file

2. Opening an existing file

3. Closing a file

4. Reading from and writing information to a file

Function description

fopen() - create a new file or open a existing file

fclose() - closes a file

getc() - reads a character from a file

putc() - writes a character to a file

fscanf() - reads a set of data from a file

fprintf() - writes a set of data to a file

getw() - reads a integer from a file

putw() - writes a integer to a file

fseek() - set the position to desire point

ftell() - gives current position in the file

rewind() - sets the position to the beginning point

1. Opening a File or Creating a File

Opening a file means creating a new file with specified file name and with accessing

mode.

The fopen() function is used to create a new file or to open an existing file.

Syntax:

*fp = FILE *fopen(const char *filename, const char *mode);

Here, *fp is the FILE pointer (FILE *fp), which will hold the reference to the

opened(or created) file.

filename is the name of the file to be opened and mode specifies the purpose of

opening the file.

Mode can be of following types:

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 3

Mode Description

Mode Purpose

r opens a text file in reading mode

w opens or create a text file in writing mode.

a opens a text file in append mode

r+ opens a text file in both reading and writing mode

w+ opens a text file in both reading and writing mode

a+ opens a text file in both reading and writing mode

rb opens a binary file in reading mode

wb opens or create a binary file in writing mode

ab opens a binary file in append mode

rb+ opens a binary file in both reading and writing mode

wb+ opens a binary file in both reading and writing mode

ab+ opens a binary file in both reading and writing mode

2. Closing a File

A file must be closed after all the operation of the file have been completed. The

fclose() function is used to close an already opened file.

Syntax:

int fclose(FILE *fp);

Here fclose() function closes the file and returns zero on success, or EOF if there is an

error in closing the file. This EOF is a constant defined in the header file stdio.h.

3. Reading and writing to a text file

i. Read a character from a file: fgetc function

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 4

The ‘fgetc’ function is used to read a character from a file which is opened in read

mode.

Syntax:

c=fgetc(p1);

where p1 is the file pointer.

ii. Read a data from a file: fscanf function

The fscanf function is used to read data from a file. It is similar to the scanf function

except that fscanf() is used to read data from the disk.

Syntax:

fscanf(fb “format string”, &v1, &v2…&vn);

where fb refers to the file pointer. v1, v2, … vn refers variables whose values are read

from the disk “format string” refers the control string which represents the conversion

specification.

iii. Write a character to a file:fputc function

The function ‘fputc’ is used to write a character variable x to the file opened in write

mode.

Syntax:

fputc(x,fp1);

where fp1 is the file pointer.

iv. Writing data to a file : fprintf()

fprintf() function is used to write data to a file. It is similar to the printf() function

except that fprintf() is used to write data to the disk.

Syntax:

fprintf(fp, “format string”, v1,v2… vn);

where fp refers to the file pointer.

5.2 Types of file processing

There are two main ways a file can be organized:

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 5

1. Sequential Access — In this type of file, the data are kept sequentially. To read last

record of the file, it is expected to read all the records before that particular record. It

takes more time for accessing the records.

2. Random Access — In this type of file, the data can be read and modified

randomly. If it is desired to read the last record of a file, directly the same record can

be read. Due to random access of data, it takes less access time as compared to the

sequential file.

Sequential Access File

 A Sequential file is characterized by the fact that individual data items are

arranged serially in a sequence, one after another. They can only be processed in serial

order from the beginning. In other words, the records can be accessed in the same

manner in which they have been stored. It is not possible to start reading or writing a

sequential file from anywhere except at the beginning.

Random Access File

 The second and better method of arranging records of a file is called direct

access or random access. In this arrangement one can have access to any record which

is situated at the middle of the file without reading or passing through other records in

the file.

5.3 Reading Sequential Access file

Data is stored in files so that the data can be retrieved for processing when needed

Example:

clients.dat file contents

100 Jones 9023.00

200 Frank 234.00

300 Mano 29023.00

400 Bala 2344.00

Program:

// Reading and printing a sequential file

#include <stdio.h>

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 6

#include <stdlib.h>

int main(void) {

 unsigned int account; // account number

 char name[30]; // account name

 double balance; // account balance

 FILE *cfPtr; // cfPtr = clients.dat file pointer

 // fopen opens file; exits program if file cannot be opened

 if ((cfPtr = fopen("clients.dat", "r")) == NULL) {

 puts("File could not be opened");

exit(0);

 }

 printf("%-10s%-13s%s\n", "Account", "Name", "Balance");

 fscanf(cfPtr, "%d%29s%lf", &account, name, &balance);

 // while not end of file

 while (!feof(cfPtr)) {

 printf("%-10d%-13s%7.2f\n", account, name, balance);

 fscanf(cfPtr, "%d%29s%lf", &account, name, &balance);

 } // end while

 fclose(cfPtr); // fclose closes the file

} // end main

Output:

Account Name Balance

100 Jones 9023.00

200 Frank 234.00

300 Mano 29023.00

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 7

400 Bala 2344.00

5.4 Read numbers from file and calculate Average

/* Program to read from the num.dat file and find the average of the numbers */

#include <stdio.h>

#include <stdlib.h>

#define DATAFILE "prog15.dat"

 int main() {

 FILE* fp;

 int n[50], i = 0;

 float sum = 0;

 if ((fp = fopen(DATAFILE, "r")) == NULL) {

 printf("Unable to open %s...\n", DATAFILE);

 exit(0);

 }

 puts("Reading numbers from num.dat");

 while (!feof(fp)) {

 fscanf(fp, "%d ", &n[i]);

 printf("%d %d\n", i, n[i]);

 sum += n[i];

 i++;

 }

 fclose(fp);

 // if no data is available in the file

 if (i == 0)

 printf("No data available in %s", DATAFILE);

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 8

 float average = sum / i;

 printf("The average is %.3f for %d numbers\n", average, i);

return 0;

}

Output:

5.5 Random access file

 Access individual records without searching through other records

 Instant access to records in a file

 Data can be inserted without destroying other data

 Data previously stored can be updated or deleted without overwriting.

 Implemented using fixed length records

 Sequential files do not have fixed length records

0 200 300 400 500

byte offsets}

} } } } } }

100

100

bytes
100

bytes
100

bytes
100

bytes
100

bytes
100

bytes

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 9

5.5.1 Functions For Selecting A Record Randomly

The functions used to randomly access a record stored in a file are fseek(), ftell(),

rewind(), fgetpos(), and fsetpos().

1. fseek()

• fseek() is used to reposition a binary stream. The prototype of fseek() can be

given as,

• int fseek(FILE *stream, long offset, int origin);

• fseek() is used to set the file position pointer for the given stream. Offset is an

integer value that gives the number of bytes to move forward or backward in

the file. Offset may be positive or negative, provided it makes sense. For

example, you cannot specify a negative offset if you are starting at the

beginning of the file. The origin value should have one of the following values

(defined in stdio.h):

• SEEK_SET: to perform input or output on offset bytes from start of the file

• SEEK_CUR: to perform input or output on offset bytes from the current

position in the file

• SEEK_END: to perform input or output on offset bytes from the end of the file

• SEEK_SET, SEEK_CUR and SEEK_END are defined constants with value 0,

1 and 2 respectively.

• On successful operation, fseek() returns zero and in case of failure, it returns a

non-zero value. For example, if you try to perform a seek operation on a file

that is not opened in binary mode then a non-zero value will be returned.

• fseek() can be used to move the file pointer beyond a file, but not before the

beginning.

Example: Write a program to print the records in reverse order. The file must be

opened in binary mode. Use fseek()

#include<stdio.h>

#include<conio.h>

main()

{ typedef struct employee

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 10

 { int emp_code;

 char name[20];

 int hra;

 int da;

 int ta;

 };

 FILE *fp;

 struct employee e;

 int result, i;

 fp = fopen("employee.txt", "rb");

 if(fp==NULL)

 { printf("\n Error opening file");

 exit(1);

 }

 for(i=5;i>=0;i--)

 { fseek(fp, i*sizeof(e), SEEK_SET);

 fread(&e, sizeof(e), 1, fp);

 printf("\n EMPLOYEE CODE : %d", e.emp_code);

 printf("\n Name : %s", e.name);

 printf("\n HRA, TA and DA : %d %d %d", e.hra, e.ta, e.da);

 }

 fclose(fp);

 getch();

 return 0;

}

2. rewind()

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 11

• rewind() is used to adjust the position of file pointer so that the next I/O

operation will take place at the beginning of the file. It’s prototype can be given

as

• void rewind(FILE *f);

• rewind() is equivalent to calling fseek() with following parameters:

fseek(f,0L,SEEK_SET);

3. fgetpos()

• The fgetpos() is used to determine the current position of the stream. It’s

prototype can be given as

 int fgetpos(FILE *stream, fpos_t *pos);

• Here, stream is the file whose current file pointer position has to be determined.

pos is used to point to the location where fgetpos() can store the position

information. The pos variable is of type fops_t which is defined in stdio.h and

is basically an object that can hold every possible position in a FILE.

• On success, fgetpos() returns zero and in case of error a non-zero value is

returned. Note that the value of pos obtained through fgetpos() can be used by

the fsetpos() to return to this same position.

4. fsetpos()

• The fsetpos() is used to move the file position indicator of a stream to the

location indicated by the information obtained in "pos" by making a call to the

fgetpos(). Its prototype is

• int fsetpos(FILE *stream, const fops_t pos);

• Here, stream points to the file whose file pointer indicator has to be re-

positioned. pos points to positioning information as returned by "fgetpos".

• On success, fsetpos() returns a zero and clears the end-of-file indicator. In case

of failure it returns a non-zero value

The program opens a file and reads bytes at several different locations.

#include <stdio.h>

main()

{

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 12

 FILE *fp;

 fpos_t pos;

 char feedback[20];

 fp = fopen(“comments.txt”, “rb”);

 if(fp == NULL)

 {

 printf(“\n Error opening file”);

 exit(1);

 }

 // Read some data and then check the position.

 fread(feedback, sizeof(char), 20, fp);

 if(fgetpos(fp, &pos) != 0)

 {

 printf(“\n Error in fgetpos()");

 exit(1);

 }

 fread(feeback, sizeof(char), 20, fp);

 printf("\n 20 bytes at byte %ld: %s", pos, feedback);

 // Set a new position and read more data

 pos = 90;

 if(fsetpos(fp, &pos) != 0)

 {

 printf(“\n Error in fsetpos()");

 exit(1);

 }

 fread(feedback, sizeof(char), 20, fp);

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 13

 printf("\n 20 bytes at byte %ld: %s", pos, feedback);

 fclose(fp);

 }

5. ftell()

The ftell function is used to know the current position of file pointer. It is at this

position at which the next I/O will be performed. The syntax of the ftell() defined in

stdio.h can be given as:

long ftell (FILE *stream);

On successful, ftell() function returns the current file position (in bytes) for stream.

However, in case of error, ftell() returns -1.

When using ftell(), error can occur either because of two reasons:

First, using ftell() with a device that cannot store data (for example, keyboard)

Second, when the position is larger than that can be represented in a long integer. This

will usually happen when dealing with very large files

FILE *fp;

char c;

int n;

fp=fopen("abc","w");

if(fp==NULL)

{ printf("\n Error Opening The File");

 exit(1);

}

while((c=getchar())!=EOF)

putc(c,fp);

n = ftell(fp);

fclose(fp);

fp=fopen("abc","r");

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 14

if(fp==NULL)

{ printf("\n Error Opening The File");

 exit(1);

}

while(ftell(fp)<n)

{ c= fgetc(fp);

 printf('%c", c);

}

fclose(fp);

5.6 Example Program: Transaction processing using random access files

The program maintains a bank’s account information—updating existing accounts,

adding new accounts, deleting accounts and storing a listing of all the current accounts

in a text file for printing.

The program has five options.

Option 1

calls function textFile to store a formatted list of all the accounts (typically called a

report) in a text file called accounts.txt that may be printed later. The function

uses fread and the sequential file access techniques used in the program of Section

below.

After option 1 is chosen, the file accounts.txt contains:

Acct Last Name First Name Balance

 29 Brown Nancy -24.54

 33 Dunn Stacey 314.33

 37 Barker Doug 0.00

 88 Smith Dave 258.34

 96 Stone Sam 34.98

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 15

Option 2

calls the function updateRecord to update an account. The function will update only

a record that already exists, so the function first checks whether the record specified

by the user is empty. The record is read into structure client with fread, then member

acctNum is compared to 0. If it’s 0, the record contains no information, and a message

is printed stating that the record is empty. Then the menu choices are displayed. If the

record contains information, function updateRecord inputs the transaction amount,

calculates the new balance and rewrites the record to the file.

Enter account to update (1 - 100): 37

37 Barker Doug 0.00

Enter charge (+) or payment (-): +87.99

37 Barker Doug 87.99

Option 3

calls the function newRecord to add a new account to the file. If the user enters an

account number for an existing account, newRecord displays an error message

indicating that the record already contains information, and the menu choices are

printed again

Enter new account number (1 - 100): 22

Enter lastname, firstname, balance

? Johnston Sarah 247.45

Option 4

calls function deleteRecord to delete a record from the file. Deletion is accomplished

by asking the user for the account number and re-initialising the record. If the account

contains no information, deleteRecord displays an error message indicating that the

account does not exist.

Option 5

terminates program execution.

Example Program:

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 16

// Bank-account program reads a random-access file sequentially, updates data already

written to the file, creates new data to be placed in the file, and deletes data previously

in the file. //

#include <stdio.h>

#include <stdlib.h>

// clientData structure definition

struct clientData {

 unsigned int acctNum; // account number

 char lastName[15]; // account last name

 char firstName[10]; // account first name

 double balance; // account balance

}; // end structure clientData

 // prototypes

unsigned int enterChoice(void);

void textFile(FILE *readPtr);

void updateRecord(FILE *fPtr);

void newRecord(FILE *fPtr);

void deleteRecord(FILE *fPtr);

int main(int argc, char *argv[]) {

 FILE *cfPtr; // credit.dat file pointer

 unsigned int choice; // user's choice

 // fopen opens the file; exits if file cannot be opened

 // Do not change the mode "rb+" - it will not work!

 if ((cfPtr = fopen("credit.dat", "rb+")) == NULL) {

 printf("%s: File could not be opened.\n", argv[0]);

 exit(-1);

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 17

 }

 // enable user to specify action

 while ((choice = enterChoice()) != 5) {

 switch (choice) {

 // create text file from record file

 case 1:

 textFile(cfPtr); break;

 // update record

 case 2:

 updateRecord(cfPtr); break;

 // create record

 case 3:

 newRecord(cfPtr); break;

 // delete existing record

 case 4:

 deleteRecord(cfPtr); break;

 // display if user does not select valid choice

 default:

 puts("Incorrect choice"); break;

 } // end switch

 } // end while

 fclose(cfPtr); // fclose closes the file

} // end main

// create formatted text file for printing

void textFile(FILE *readPtr) {

 FILE *writePtr; // accounts.txt file pointer

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 18

 int result; // used to test whether fread read any bytes

 // create clientData with default information

 struct clientData client = {0, "", "", 0.0};

 // fopen opens the file; exits if file cannot be opened

 if ((writePtr = fopen("accounts.txt", "w")) == NULL) {

 puts("File could not be opened.");

 } // end if

 else {

 rewind(readPtr); // sets pointer to beginning of file

 fprintf(writePtr, "%-6s%-16s%-11s%10s\n", "Acct", "Last Name","First Name",

"Balance");

 // copy all records from random-access file into text file

 while (!feof(readPtr)) {

 result = fread(&client, sizeof(struct clientData), 1, readPtr);

 // write single record to text file

 if (result != 0 && client.acctNum != 0) {

 fprintf(writePtr, "%-6d%-16s%-11s%10.2f\n", client.acctNum,

 client.lastName, client.firstName, client.balance);

 } // end if

 } // end while

 fclose(writePtr); // fclose closes the file

 } // end else

} // end function textFile

 // update balance in record

void updateRecord(FILE *fPtr) {

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 19

 unsigned int account; // account number

 double transaction; // transaction amount

 // create clientData with no information

 struct clientData client = {0, "", "", 0.0};

 // obtain number of account to update

 printf("%s", "Enter account to update (1 - 100): ");

 scanf("%d", &account);

 // move file pointer to correct record in file

 fseek(fPtr, (account - 1) * sizeof(struct clientData), SEEK_SET);

 // read record from file

 fread(&client, sizeof(struct clientData), 1, fPtr);

 // display error if account does not exist

 if (client.acctNum == 0) {

 printf("Account #%d has no information.\n", account);

 } else { // update record

 printf("%-6d%-16s%-11s%10.2f\n\n", client.acctNum, client.lastName,

 client.firstName, client.balance);

 // request transaction amount from user

 printf("%s", "Enter charge (+) or payment (-): ");

 scanf("%lf", &transaction);

 client.balance += transaction; // update record balance

printf("%-6d%-16s%-11s%10.2f\n", client.acctNum, client.lastName,

client.firstName, client.balance);

// move file pointer to correct record in file

// move back by 1 record length

fseek(fPtr, -sizeof(struct clientData), SEEK_CUR);

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 20

 // write updated record over old record in file

 fwrite(&client, sizeof(struct clientData), 1, fPtr);

 } // end else

} // end function updateRecord

// delete an existing record

void deleteRecord(FILE *fPtr) {

 struct clientData client; // stores record read from file

 struct clientData blankClient = {0, "", "", 0}; // blank client

 unsigned int accountNum; // account number

 // obtain number of account to delete

 printf("%s", "Enter account number to delete (1 - 100): ");

 scanf("%d", &accountNum);

 // move file pointer to correct record in file

 fseek(fPtr, (accountNum - 1) * sizeof(struct clientData), SEEK_SET);

 // read record from file

 fread(&client, sizeof(struct clientData), 1, fPtr);

 // display error if record does not exist

 if (client.acctNum == 0) {

 printf("Account %d does not exist.\n", accountNum);

 } // end if

 else { // delete record

 // move file pointer to correct record in file

 fseek(fPtr, (accountNum - 1) * sizeof(struct clientData), SEEK_SET);

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 21

 // replace existing record with blank record

 fwrite(&blankClient, sizeof(struct clientData), 1, fPtr);

 } // end else

} // end function deleteRecord

// create and insert record

void newRecord(FILE *fPtr) {

 // create clientData with default information

 struct clientData client = {0, "", "", 0.0};

 unsigned int accountNum; // account number

 // obtain number of account to create

 printf("%s", "Enter new account number (1 - 100): ");

 scanf("%d", &accountNum);

 // move file pointer to correct record in file

 fseek(fPtr, (accountNum - 1) * sizeof(struct clientData), SEEK_SET);

 // read record from file

 fread(&client, sizeof(struct clientData), 1, fPtr);

 // display error if account already exists

 if (client.acctNum != 0) {

 printf("Account #%d already contains information.\n", client.acctNum);

 } // end if

 else { // create record user enters last name, first name and balance

 printf("%s", "Enter lastname, firstname, balance\n? ");

 scanf("%14s%9s%lf", client.lastName, client.firstName, &client.balance);

 client.acctNum = accountNum;

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 22

 // move file pointer to correct record in file

 fseek(fPtr, (client.acctNum - 1) * sizeof(struct clientData), SEEK_SET);

 // insert record in file

 fwrite(&client, sizeof(struct clientData), 1, fPtr);

 } // end else

} // end function newRecord

// enable user to input menu choice

unsigned int enterChoice(void) {

 unsigned int menuChoice; // variable to store user's choice

 // display available options

 printf("%s", "\nEnter your choice\n"

 "1 - store a formatted text file of accounts called\n"

 " \"accounts.txt\" for printing\n"

 "2 - update an account\n"

 "3 - add a new account\n"

 "4 - delete an account\n"

 "5 - end program\n? ");

 scanf("%u", &menuChoice); // receive choice from user

 return menuChoice;

} // end function enterChoice

Output

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 23

5.7 Command line arguments

Command line argument is a parameter supplied to the program when it is invoked.

Command line argument is an important concept in C programming. It is mostly used

when you need to control your program from outside. Command line arguments are

passed to the main() method.

Syntax:

int main(int argc, char *argv[])

https://camo.githubusercontent.com/6d691ac6bb67884d02b3ac32e7a688bc79bf23c2f771fb6f9cb2b9b0fcfb5dfe/68747470733a2f2f692e696d6775722e636f6d2f573036593153512e6a7067

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 24

Here argc counts the number of arguments on the command line and argv[] is a

pointer array which holds pointers of type char which points to the arguments passed

to the program

Example:

#include <stdio.h>

#include <conio.h>

int main(int argc, char *argv[])

{

int i;

if(argc >= 2)

{

printf("The arguments supplied are:\n");

for(i = 1; i < argc; i++)

{

printf("%s\t", argv[i]);

}

}

else

{

printf("argument list is empty.\n");

}

return 0;

}

Remember that argv[0] holds the name of the program and argv[1] points to the first

command line argument and argv[n] gives the last argument. If no argument is

supplied, argc will be 1.

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 25

Multiple Choice Questions

1. _______ is a collection of data.

A. Buffer

B. Stream

C. File

Answer: File

2. If the mode includes b after the initial letter, what does it indicates?

a) text file

b) big text file

c) binary file

Answer: binary file

3. What is the function of the mode ‘ w+’?

a) create text file for writing, discard previous contents if any

b) create text file for update, discard previous contents if any

c) create text file for writing, do not discard previous contents if any

d) create text file for update, do not discard previous contents if any

Answer: create text file for update, discard previous contents if any

4. fflush(NULL) flushes all ____________

a) input streams

b) output streams

c) previous contents

d) appended text

Answer: output streams

5. What is the keyword used to declare a C file pointer.?

A) file

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 26

B) FILE

C) FILEFP

D) filefp

Answer: FILE

6. What is a C FILE data type.?

A) FILE is like a Structure only

B) FILE is like a Union only

C) FILE is like a user define int data type

D) None of the above

Answer: FILE is like a Structure only

7. Where is a file temporarily stored before read or write operation in C

language.?

A) Notepad

B) RAM

C) Hard disk

D) Buffer

Answer: Buffer

8. Which function gives the current position of the file.

A. fseek()

B. fsetpos()

C. ftell()

D. Rewind()

Answer: ftell()

9. Which function is used to perform block output in binary files?

A. fwrite()

B. fprintf()

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 27

C. fputc()

D. fputs()

Answer: fwrite()

10. Select the standard stream in C

A. stdin

B. stdout

C. stderr

D. all of these

Answer: all of these

11. From which standard stream does a C program read data?

A. Stdin

B. stdout

C. stderr

D. all of these

Answer: stderr

12. Which acts as an interface between stream and hardware?

A. file pointer

B. buffer

C. stdout

D. stdin

Answer: buffer

13. Which function is used to associate a file with a stream?

A. fread()

CS8251 Programming in C - UNIT V

B. Shanmuga Sundari, ASP/CSE, 9632 PET Engineering College, Vallioor 28

B. fopen()

C. floes()

D. fflush()

Answer: fopen()

14. Which function returns the next character from stream, EOF if the end of file

is reached, or if there is an error?

A. fgetc()

B. fgets()

C. fputs()

D. fwrite()

Answer: fgetc()

